Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## N. Srinivasan,<sup>a</sup> B. Sridhar<sup>b</sup> and R. K. Rajaram<sup>b</sup>\*

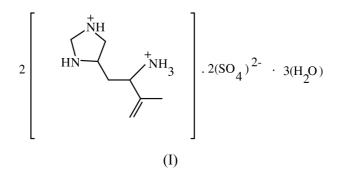
<sup>a</sup>Department of Physics, Thiagarajar College, Madurai 625 009, India, and <sup>b</sup>Department of Physics, Madurai Kamaraj University, Madurai 625 021, India

Correspondence e-mail: sshiya@yahoo.com

#### **Key indicators**

Single-crystal X-ray study T = 293 KMean  $\sigma(C-C) = 0.012 \text{ Å}$ Disorder in solvent or counterion R factor = 0.052 wR factor = 0.147 Data-to-parameter ratio = 6.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. In the title compound,  $2C_6H_{11}N_3O_2^{2+}\cdot 2SO_4^{2-}\cdot 3H_2O$ , both diprotonated histidinium cations are linked by strong hydrogen bonds by water molecules and normal hydrogen bonds by sulfate anions. The  $C^{\gamma}$  atom has a *gauche* II conformation with respect to the amino N atom and it is *trans* to the C' atom for both molecules. The imidazolinium rings are normal to the carbon skeletal plane, as expected.


Bis(L-histidinium sulfate) trihydrate

Received 1 June 2001 Accepted 12 June 2001 Online 22 June 2001

#### Comment

The crystal structures of L-histidine (Madden *et al.*, 1972), L-histidine hydrochloride monohydrate (Fuess *et al.*, 1977), DL-histidine hydrochloride dihydrate (Bennett *et al.*, 1970), L-histidinium dinitrate (Asath Bahadur, 1992), DL-histidinium dinitrate (Asath Bahadur, 1992), DL-histidinium sulfamate (Asath Bahadur, 1992) and DL-histidine perchlorate (Asath Bahadur, 1992) have been reported earlier. In the present study, the crystal structure determination of bis(L-histidinium sulfate) trihydrate, (I), was undertaken.

The two crystallographically independent diprotonated histidinium molecules (*A* and *B*) have similar geometries. The histidinium molecule consists of two groups of nearly coplanar atoms. The chain has a straight conformation in molecules *A* and *B* which adopts the open form, as is present in L-histidine (Madden *et al.*, 1972) and DL-histidine hydrochloride (Bennett *et al.*, 1970). The conformation angles are such that  $\chi^1$  is in the *gauche* II conformation [-61.9 (7) and -53.8 (7)°] for both molecules having a closed conformation (Pratap *et al.*, 2000) (Table 1).



The sulfate anion links the amino N atom and the imidazolinium group of both molecules A and B and the water molecules through hydrogen bonds and stabilizes the structure (Table 2). The sulfate anion links the imidazolinium rings of both molecules, extending as a chain along the a axis (N12– H12A···O3<sup>i</sup>, N13–H13···O1<sup>iv</sup>, N22–H22A···O8<sup>/v</sup> and N22–H23···O6<sup>vii</sup>). A three-centered (bifurcated) hydrogen

© 2001 International Union of Crystallography Printed in Great Britain – all rights reserved

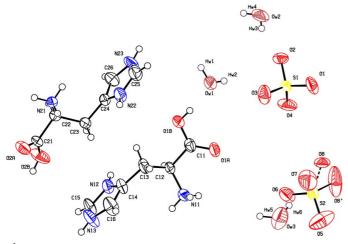



Figure 1

The molecular structures of the two independent cations showing the atomic numbering scheme and 50% probability displacement ellipsoids (Johnson, 1976).

bond is observed in the case of the amino N atom of molecule A with sulfate O atoms (Jeffrey & Saenger, 1991). The water molecules OW1 and OW2, as acceptors, link the carboxyl O atom of both molecules through strong hydrogen bonds. Both crystallographically independent sulfate anions are linked to the three water molecules by hydrogen bonds. Molecules A and B are engaged in a straight (S1) head-to-tail sequence since the hydrogen bonds, viz. N11-H11C···O2A<sup>iii</sup> and N21-H21C···O1 $A^{v}$ , connect the amino acids along the (101) plane (Vijayan, 1988), as a closed dimer (Jeffrey & Saenger, 1991).

## **Experimental**

The title compound, (I), was crystallized from an aqueous solution of DL-histidine and sulfuric acid by slow evaporation.

#### Crystal data

2303 measured reflections 2303 independent reflections

2280 reflections with  $I > 2\sigma(I)$ 

| $2C_6H_{11}N_3O_2^{2+}\cdot 2SO_4^{2-}\cdot 3H_2O$ | $D_m = 1.568 \text{ Mg m}^{-3}$              |
|----------------------------------------------------|----------------------------------------------|
| $M_r = 280.26$                                     | $D_m$ measured by flotation in a             |
| Triclinic, P1                                      | mixture of carbon tetrachloride              |
| a = 8.3400 (13)  Å                                 | and xylene                                   |
| b = 8.9291 (11)  Å                                 | Cu $K\alpha$ radiation                       |
| c = 10.724 (2)  Å                                  | Cell parameters from 25                      |
| $\alpha = 102.576 \ (13)^{\circ}$                  | reflections                                  |
| $\beta = 107.704 \ (15)^{\circ}$                   | $\theta = 15.2 - 23.8^{\circ}$               |
| $\gamma = 119.667 \ (11)^{\circ}$                  | $\mu = 2.81 \text{ mm}^{-1}$                 |
| $V = 592.03 (16) \text{ Å}^3$                      | T = 293 (2) K                                |
| Z = 2                                              | Needle, colorless                            |
| $D_x = 1.572 \text{ Mg m}^{-3}$                    | $0.50 \times 0.30 \times 0.15 \ \mathrm{mm}$ |
| Data collection                                    |                                              |
| Enraf-Nonius sealed-tube diffract-                 | $\theta_{\rm max} = 68.0^{\circ}$            |
| ometer                                             | $h = 0 \rightarrow 10$                       |
| $\omega$ –2 $\theta$ scans                         | $k = -10 \rightarrow 9$                      |
| Absorption correction: $\psi$ scan                 | $l = -12 \rightarrow 12$                     |
| (North et al., 1968)                               | 25 standard reflections                      |
| $T_{\min} = 0.418, T_{\max} = 0.656$               | every 3 reflections                          |
| 2303 measured reflections                          | frequency: 60 min                            |

intensity decay: none

## Refinement

| Refinement on $F^2$             | $w = 1/[\sigma^2(F_o^2) + (0.1061P)^2]$                    |
|---------------------------------|------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.052$ | + 0.4470P]                                                 |
| $wR(F^2) = 0.148$               | where $P = (F_o^2 + 2F_c^2)/3$                             |
| S = 1.05                        | $(\Delta/\sigma)_{\rm max} = 0.014$                        |
| 2303 reflections                | $\Delta \rho_{\rm max} = 0.79 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 346 parameters                  | $\Delta \rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-3}$ |
| H atoms treated by a mixture of | Extinction correction: SHELXL97                            |
| independent and constrained     | Extinction coefficient: 0.042 (4)                          |
| refinement                      | Absolute structure: Flack (1983)                           |
|                                 | Flack parameter $= 0.03$ (3)                               |

# Table 1

Selected geometric parameters (Å, °).

| 01A-C11         | 1.218 (7) | O2A-C21         | 1.217 (7) |
|-----------------|-----------|-----------------|-----------|
| O1B-C11         | 1.286 (8) | O2B-C21         | 1.303 (7) |
|                 |           |                 |           |
| O1A-C11-C12-N11 | 11.9 (8)  | O2A-C21-C22-N21 | 0.4 (8)   |
| N11-C12-C13-C14 | -61.9(7)  | N21-C22-C23-C24 | -53.8 (7) |
| C11-C12-C13-C14 | 175.6 (6) | C21-C22-C23-C24 | -173.8(5) |
| C12-C13-C14-C16 | 118.4 (9) | C22-C23-C24-C26 | -82.1(8)  |
| C12-C13-C14-N12 | -64.2(9)  | C22-C23-C24-N22 | 97.2 (7)  |
|                 |           |                 |           |

#### Table 2 Hydrogen-bonding geometry (Å, °).

| $D - H \cdot \cdot \cdot A$            | D-H       | $H \cdots A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|----------------------------------------|-----------|--------------|--------------|---------------------------|
| $O1B-H1B\cdots OW1$                    | 0.82      | 1.68         | 2.474 (6)    | 162                       |
| $N11-H11A\cdots O7^{i}$                | 0.89      | 1.92         | 2.795 (8)    | 169                       |
| $N11 - H11B \cdot \cdot \cdot O2^{ii}$ | 0.89      | 2.23         | 3.046 (6)    | 153                       |
| $N11 - H11B \cdot \cdot \cdot O4^{ii}$ | 0.89      | 2.32         | 3.055 (8)    | 140                       |
| $N11-H11C\cdots O2A^{iii}$             | 0.89      | 2.12         | 2.989 (6)    | 164                       |
| $N12-H12A\cdots O3^{i}$                | 0.86      | 1.82         | 2.662 (7)    | 166                       |
| $N13-H13\cdots O1^{iv}$                | 0.86      | 1.98         | 2.794 (8)    | 156                       |
| $O2B - H2B \cdots OW2^{iv}$            | 0.82      | 1.67         | 2.485 (7)    | 172                       |
| $N21 - H21A \cdots O4^{v}$             | 0.89      | 1.86         | 2.714 (6)    | 161                       |
| $N21 - H21B \cdot \cdot \cdot O6^{v}$  | 0.89      | 1.89         | 2.767 (7)    | 170                       |
| $N21 - H21C \cdot \cdot \cdot O1A^{v}$ | 0.89      | 2.09         | 2.895 (6)    | 149                       |
| $N22 - H22A \cdots O8^{v}$             | 0.86      | 1.81         | 2.665 (11)   | 175                       |
| $N22 - H22A \cdots O8'^{v}$            | 0.86      | 1.95         | 2.713 (19)   | 148                       |
| $N23-H23\cdots O6^{vi}$                | 0.86      | 2.05         | 2.821 (7)    | 150                       |
| $OW1 - HW1 \cdots O5^{vi}$             | 0.88 (9)  | 1.87 (9)     | 2.629 (9)    | 144 (7)                   |
| OW1−HW2···O3                           | 0.68 (8)  | 2.08 (8)     | 2.684 (8)    | 148 (8)                   |
| OW2−HW3···O2                           | 0.65 (8)  | 2.09 (8)     | 2.666 (7)    | 149 (8)                   |
| $OW2-HW4\cdots O8^{vi}$                | 0.82 (12) | 1.79 (12)    | 2.588 (14)   | 162 (10)                  |
| OW3−HW5···O1 <sup>ii</sup>             | 0.98      | 1.80         | 2.775 (13)   | 180                       |
| OW3−HW6···O7                           | 0.98      | 1.93         | 2.909 (15)   | 179                       |

Symmetry codes: (i) x, y - 1, z; (ii) 1 + x, y, z; (iii) x - 1, y, z - 1; (iv) 1 + x, y - 1, z; (v) 1 + x, y, 1 + z; (vi) x, y, 1 + z.

One of the O atoms (O8) of the sulfate anion is disordered and the site-occupation factors of O8 and O8' are 0.74 (2) and 0.29 (2), respectively. The H atoms of the water molecules were located from difference Fourier maps and refined, leading to short O-H bonds, since the H atoms of the water molecules cannot be fixed by HFIX constraints, while all other H atoms were fixed by geometric constraints using HFIX and were allowed to ride on the carrier atom.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1999); software used to prepare material for publication: SHELXL97.

BS and RKR thank the Department of Science and Technology (DST), Government of India, for financial support.

### References

- Asath Bahadur, S. (1992). PhD thesis. Madurai Kamaraj University, Madurai, India.
- Bennett, I., Davidson, A. G. H., Harding, M. M. & Morelle, I. (1970). Acta Cryst. B26, 1722–1729.
- Enraf–Nonius (1989). *CAD-4 Software*. Version 5.0. Enraf–Nonius, Delft, The Netherlands.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Fuess, H., Hohlwein, D. & Mason, S. A. (1977). Acta Cryst. B33, 654-659.

- Jeffrey, G. A. & Saenger, W. (1991). In *Hydrogen Bonding in Biological Structures*. Berlin, Heidelberg, New York: Springer-Verlag.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Madden, J. J., McGandy, E. L., Seeman, N. C., Harding, M. M. & Hoy, A. (1972). Acta Cryst. B28, 2382–2389.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Pratap, J. V., Ravishankar, R. & Vijayan, M. (2000). Acta Cryst. B56, 690–696. Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Spek, A. L. (1999). *PLATON for Windows*. Utrecht University, The Netherlands.
- Vijayan, M. (1988). Prog. Biophys. Mol. Biol. 52, 71-99.